首页> 外文OA文献 >Non-parametric regression estimation from data contaminated by a mixture of Berkson and classical errors
【2h】

Non-parametric regression estimation from data contaminated by a mixture of Berkson and classical errors

机译:根据Berkson和经典误差混合污染的数据进行非参数回归估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimation of a regression function is a well-known problem in the context of errors in variables, where the explanatory variable is observed with random noise. This noise can be of two types, which are known as classical or Berkson, and it is common to assume that the error is purely of one of these two types. In practice, however, there are many situations where the explanatory variable is contaminated by a mixture of the two errors. In such instances, the Berkson component typically arises because the variable of interest is not directly available and can only be assessed through a proxy, whereas the inaccuracy that is related to the observation of the latter causes an error of classical type. We propose a non-parametric estimator of a regression function from data that are contaminated by a mixture of the two errors. We prove consistency of our estimator, derive rates of convergence and suggest a data-driven implementation. Finite sample performance is illustrated via simulated and real data examples. Copyright 2007 Royal Statistical Society.
机译:在变量错误的情况下,回归函数的估计是一个众所周知的问题,其中解释变量是在随机噪声下观察到的。该噪声可以有两种类型,称为经典噪声或伯克森噪声,通常假定误差纯粹是这两种类型之一。然而,实际上,在许多情况下,解释变量受两个错误的混合污染。在这种情况下,通常会产生伯克森分量,因为感兴趣的变量不是直接可用的,只能通过代理进行评估,而与后者的观察相关的不准确性会导致经典类型的错误。我们提出了由两个误差的混合污染的数据的回归函数的非参数估计量。我们证明了估计量的一致性,得出了收敛速度,并提出了数据驱动的实施方案。通过模拟和真实数据示例说明了有限的样本性能。版权所有2007皇家统计协会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号